Translation Map in Quantum Principal Bundles

نویسنده

  • Tomasz Brzeziński
چکیده

The notion of a translation map in a quantum principal bundle is introduced. A translation map is then used to prove that the cross sections of a quantum fibre bundle E(B, V,A) associated to a quantum principal bundle P (B,A) are in bijective correspondence with equivariant maps V → P , and that a quantum principal bundle is trivial if it admits a cross section which is an algebra map. The vertical automorphisms and gauge transformations of a quantum principal bundle are discussed. In particular it is shown that vertical automorphisms are in bijective correspondence with AdR-covariant maps A → P . Current address: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 9EW, U.K. E-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally trivial quantum vector bundles and associated vector bundles

We define locally trivial quantum vector bundles (QVB) and construct such QVB associated to locally trivial quantum principal fibre bundles. The construction is quite analogous to the classical construction of associated bundles. A covering of such bundles is induced from the covering of the subalgebra of coinvariant elements of the principal bundle. There exists a differential structure on the...

متن کامل

A COVERING PROPERTY IN PRINCIPAL BUNDLES

Let $p:Xlo B$ be a locally trivial principal G-bundle and $wt{p}:wt{X}lo B$ be a locally trivial principal $wt{G}$-bundle. In this paper, by using the structure of principal bundles according to transition functions, we show that $wt{G}$ is a covering group of $G$ if and only if $wt{X}$ is a covering space of $X$. Then we conclude that a topological space $X$ with non-simply connected universal...

متن کامل

Quantum principal bundles up to homotopy equivalence

Hopf-Galois extensions are known to be the right generalizations of both Galois field extensions and principal G-bundles in the framework of non-commutative associative algebras. An abundant literature has been devoted to them by Hopf algebra specialists (see [Mg], [Sn1], [Sn2] and references therein). Recently there has been a surge of interest in Hopf-Galois extensions among mathematicians an...

متن کامل

Bundles over Quantum RealWeighted Projective Spaces

The algebraic approach to bundles in non-commutative geometry and the definition of quantum real weighted projective spaces are reviewed. Principal U(1)-bundles over quantum real weighted projective spaces are constructed. As the spaces in question fall into two separate classes, the negative or odd class that generalises quantum real projective planes and the positive or even class that genera...

متن کامل

On Framed Quantum Principal Bundles

A noncommutative-geometric formalism of framed principal bundles is sketched, in a special case of quantum bundles (over quantum spaces) possessing classical structure groups. Quantum counterparts of torsion operators and Levi-Civita type connections are analyzed. A construction of a natural differential calculus on framed bundles is described. Illustrative examples are presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996